A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators. Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale (e.g., BERT [1]). To address this problem, we propose leveraging a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy. We design and implement an interactive visualization system that is suitable for computational graphs with up to 10 thousand elements. Experimental results and usage scenarios demonstrate that our tool reduces 60% elements on average and hence enhances the performance for recognizing and diagnosing DNN models. Our contributions are integrated into an open-source DNN visualization toolkit, namely, MindInsight [2].
translated by 谷歌翻译
Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.
translated by 谷歌翻译
In this paper, we present ExtremeBERT, a toolkit for accelerating and customizing BERT pretraining. Our goal is to provide an easy-to-use BERT pretraining toolkit for the research community and industry. Thus, the pretraining of popular language models on customized datasets is affordable with limited resources. Experiments show that, to achieve the same or better GLUE scores, the time cost of our toolkit is over $6\times$ times less for BERT Base and $9\times$ times less for BERT Large when compared with the original BERT paper. The documentation and code are released at https://github.com/extreme-bert/extreme-bert under the Apache-2.0 license.
translated by 谷歌翻译
Spatial-temporal (ST) graph modeling, such as traffic speed forecasting and taxi demand prediction, is an important task in deep learning area. However, for the nodes in graph, their ST patterns can vary greatly in difficulties for modeling, owning to the heterogeneous nature of ST data. We argue that unveiling the nodes to the model in a meaningful order, from easy to complex, can provide performance improvements over traditional training procedure. The idea has its root in Curriculum Learning which suggests in the early stage of training models can be sensitive to noise and difficult samples. In this paper, we propose ST-Curriculum Dropout, a novel and easy-to-implement strategy for spatial-temporal graph modeling. Specifically, we evaluate the learning difficulty of each node in high-level feature space and drop those difficult ones out to ensure the model only needs to handle fundamental ST relations at the beginning, before gradually moving to hard ones. Our strategy can be applied to any canonical deep learning architecture without extra trainable parameters, and extensive experiments on a wide range of datasets are conducted to illustrate that, by controlling the difficulty level of ST relations as the training progresses, the model is able to capture better representation of the data and thus yields better generalization.
translated by 谷歌翻译
神经表面重建旨在基于多视图图像重建准确的3D表面。基于神经量的先前方法主要训练完全隐式的模型,它们需要单个场景的数小时培训。最近的努力探讨了明确的体积表示,该表示通过记住可学习的素网格中的重要信息,从而大大加快了优化过程。但是,这些基于体素的方法通常在重建细粒几何形状方面遇到困难。通过实证研究,我们发现高质量的表面重建取决于两个关键因素:构建相干形状的能力和颜色几何依赖性的精确建模。特别是,后者是准确重建细节的关键。受这些发现的启发,我们开发了Voxurf,这是一种基于体素的方法,用于有效,准确的神经表面重建,该方法由两个阶段组成:1)利用可学习的特征网格来构建颜色场并获得连贯的粗糙形状,并且2)使用双色网络来完善详细的几何形状,可捕获精确的颜色几何依赖性。我们进一步引入了层次几何特征,以启用跨体素的信息共享。我们的实验表明,Voxurf同时达到了高效率和高质量。在DTU基准测试中,与最先进的方法相比,Voxurf获得了更高的重建质量,训练的加速度为20倍。
translated by 谷歌翻译
多个实例学习(MIL)是对诊断病理学的整个幻灯片图像(WSI)进行分类的强大方法。 MIL对WSI分类的基本挑战是发现触发袋子标签的\ textit {critical Instances}。但是,先前的方法主要是在独立和相同的分布假设(\ textit {i.i.d})下设计的,忽略了肿瘤实例或异质性之间的相关性。在本文中,我们提出了一种新颖的基于多重检测的多重实例学习(MDMIL)来解决上述问题。具体而言,MDMIL是由内部查询产生模块(IQGM)和多重检测模块(MDM)构建的,并在训练过程中基于内存的对比度损失的辅助。首先,IQGM给出了实例的概率,并通过在分布分析后汇总高度可靠的功能来为后续MDM生成内部查询(IQ)。其次,在MDM中,多重检测交叉注意(MDCA)和多头自我注意力(MHSA)合作以生成WSI的最终表示形式。在此过程中,智商和可训练的变异查询(VQ)成功建立了实例之间的联系,并显着提高了模型对异质肿瘤的鲁棒性。最后,为了进一步在特征空间中实施限制并稳定训练过程,我们采用基于内存的对比损失,即使在每次迭代中有一个样本作为输入,也可以实现WSI分类。我们对三个计算病理数据集进行实验,例如CamelyOn16,TCGA-NSCLC和TCGA-RCC数据集。优越的准确性和AUC证明了我们提出的MDMIL比其他最先进方法的优越性。
translated by 谷歌翻译
变压器在计算机视觉中的成功吸引了医学成像社区越来越多的关注。特别是对于医学图像细分,已经介绍了许多基于卷积神经网络(CNN)和变压器的出色混合体系结构,并取得了令人印象深刻的性能。但是,将模块化变压器嵌入CNN中的大多数方法都难以发挥其全部潜力。在本文中,我们提出了一种新型的医学图像分割的混合体系结构,称为Phtrans,该架构可与主要构建基块中的变形金刚和CNN杂交,以产生来自全球和本地特征的层次结构表示,并适应性地汇总它们,旨在完全利用其优势以获得更好的优势。细分性能。具体而言,phtrans遵循U形编码器编码器设计,并在深层阶段引入平行的Hybird模块,其中卷积块和经过修改的3D SWIN变压器分别学习本地特征和全局依赖性,然后统一尺寸,统一尺寸输出以实现特征聚合。超出颅库和自动化心脏诊断挑战数据集以外的多ATLA标签的广泛实验结果证实了其有效性,始终超过了最先进的方法。该代码可在以下网址获得:https://github.com/lseventeen/phtrans。
translated by 谷歌翻译
倒角距离(CD)和地球移动器的距离(EMD)是两个广泛采用的度量标准,用于测量两点集之间的相似性。然而,CD通常对不匹配的局部密度不敏感,EMD通常由全球分配主导,而忽略了详细结构的保真度。此外,他们的无限值范围从异常值引起沉重的影响。这些缺陷可防止它们提供一致的评估。为了解决这些问题,我们提出了一个名为密度感知倒角距离(DCD)的新的相似度量。它来自CD的源自来自若干所需性质的效果:1)它可以检测密度分布的差异,因此与CD相比更加强烈的相似性。 2)更严格,具有详细的结构,比EMD明显更加计算; 3)界限值范围促进整个测试集更稳定和合理的评估。我们采用DCD来评估点云完成任务,实验结果表明,DCD关注整体结构和本地几何细节,即使CD和EMD相互矛盾,也能提供更可靠的评估。我们还可以使用DCD作为培训损失,这胜过与所有三个指标上的CD损失培训的相同模型。此外,我们提出了一种新的点鉴别器模块,其估计另一个引导的下采样步骤的优先级,并且它在DCD下实现了明显的改进以及CD和EMD的竞争结果。我们希望我们的工作可以为更全面而实用的点云相似性评估铺平道路。我们的代码将可用:https://github.com/wutong16/dentions_aware_Chamfer_distance。
translated by 谷歌翻译
学习率调度程序已在培训深层神经网络中广泛采用。尽管它们的实际重要性,但其实践与理论分析之间存在差异。例如,即使是出于优化二次目标等简单问题,也不知道哪些SGD的时间表达到了最佳收敛性。在本文中,我们提出了本特征库,这是第一个可以在二次目标上获得最小值最佳收敛速率(最多达到常数)的最佳最佳收敛速率(最多达到常数),当时基础Hessian矩阵的特征值分布偏好。这种情况在实践中很普遍。实验结果表明,在CIFAR-10上的图像分类任务中,特征库可以显着超过阶跃衰减,尤其是当时期数量较小时。此外,该理论激发了两个简单的学习率调度程序,用于实用应用程序,可以近似特征。对于某些问题,提议的调度程序的最佳形状类似于余弦衰减的最佳形状,这阐明了余弦衰减在这种情况下的成功。对于其他情况,建议的调度程序优于余弦衰减。
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译